
HOW TO GET RID OF W?

A LATENT VARIABLES APPROACH TO MODELING

SPATIALLY LAGGED VARIABLES

Henk Folmer 1

Johan Oud 2

1Department of Spatial Sciences, University of Groningen, P.O. Box 800, NL-9700AV
Groningen, The Netherlands

and
Department of Social Sciences, Wageningen University, P.O. Box 8130,

NL-6700 EW Wageningen, The Netherlands, E-mail: Henk.Folmer@wur.nl
2Behavioural Science Institute, Radboud University Nijmegen,

P.O. Box 9104, NL-6500 HE Nijmegen, The Netherlands, E-mail: j.oud@pwo.ru.nl

1



Abstract

In this paper we propose a Structural Equation Model (SEM) ap-

proach with latent variables to model spatial dependence. Rather than

using the spatial weights matrix W, we propose to use latent variables to

represent spatial dependence and spill-over effects, of which the observed

spatially lagged variables are indicators. This approach allows to incor-

porate and test more information on spatial dependence and offers more

flexibility than the representation in terms of Wy or Wx. Furthermore, we

adapt the estimators included in the software packages Mx and LISREL

8 to estimate SEMs with spatial dependence. We present an illustration

based on Anselin’s (1988) Columbus, Ohio, crime data set.

Keywords: Structural equation model, Spatial weights matrix, Latent

variable, Maximum likelihood estimator, LISREL 8, Mx, Columbus Ohio

crime data set
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1. Introduction

Spatial dependence and spill-over effects are conventionally repre-

sented by means of the spatial weights matrix W. This matrix records

the contiguity relations for each region in its corresponding row. The se-

lection of spatial weights is a crucial feature of spatial models because it

imposes a priori a structure of spatial dependence on the model and af-

fects estimates (Bhattacharjee and Jensen-Butler, 2006; Anselin, 2002 and

Fingleton, 2003) and substantive interpretation of the research (Hemple,

1995). Therefore, it is not surprising that the last two decades have seen

major theoretical and methodological developments in specifying the ba-

sic structure of the weights matrix. For instance, Bavaud (1998) discusses

some theoretical issues related to spatial weights while Hemple (1995a,b)

develops a Bayesian posterior probabilities approach for the comparison

of spatial weights matrices for both the systematic and the disturbance

components. Getis and Aldstadt (2003) focus on constructing the spa-

tial weights matrix using a local statistic while Aldstadt and Getis (2006)

present a multidirectional optimum eco-type-based algorithm for the con-

struction of a spatial weights matrix. Bhattacharjee and Jensen-Butler

(2006) develop a method for estimating spatial weights matrices that are

consistent with an observed pattern of spatial dependence rather than as-

suming a priori the nature of spatial interactions. The interest in contigu-
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ity relations is not restricted to spatial sciences but extends to other social

sciences, particularly those subfields that focus on network analysis (see,

amongst others, Leenders (2002) and Gould (1991)).

In spite of the theoretical and methodological developments men-

tioned above, most applied work still proceeds via a priori specification

of a spatial weights matrix W based on first order double rook contigu-

ity. Other types of contiguity, higher order contiguity or spatial clustering

based on theoretical considerations or that are consistent with an observed

pattern of spatial dependence are still rather rare. Similarly for the inverse

distance matrix. Moreover, little effort has been invested in constructing

and testing alternative weights matrices.

The standard, W-based approach to modelling contiguity relations is

rigorous and inflexible. For instance, if only one spatial weights matrix

is used (which usually is the case in practice), it is not possible to simul-

taneously include contiguity to first order neighbours as well as spillover

from e.g. core regions. Moreover, spatial dependence of a given kind is

captured by one parameter only which measures the average influence of

neighbouring observations on observations of some dependent variable.

This paper proposes an alternative representation of spatial depen-

dence that allows for the inclusion of more detailed information on the

impact of spatial dependence , for testing of the a priori imposed structure
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and for detailed substantive interpretation. Particularly, we introduce the

class of Structural Equation Models (SEM) with latent variables to model

spatial dependence. In order to further clarify the purpose of the paper,

we briefly describe the notion of a latent variable and some characteristics

of SEMs.

Latent variables or theoretical constructs refer to those phenomena

that are supposed to exist but cannot be directly observed. A well-known

example a of latent variable is regional welfare. Observable variables on the

other hand possess direct empirical meanings derived from experience. La-

tent variables can only be observed and measured by means of observable

variables. For instance, the latent variable regional welfare is measured by

observed variables at the regional level such as per capita GDP, income

distribution aspects, employment opportunities, features of the housing

market, health indicators, indicators of environmental quality, etc. The

simultaneous use of both latent and observable variables in one modelling

framework has, amongst others, the advantages that latent variables are

given empirical meanings by means of operational definitions; that a closer

correspondence between theory and empirics is obtained; that measure-

ment errors are accounted for, and that the impacts of multicollinearity

can be mitigated. (See amongst others Blalock (1971) and Folmer (1986)

and the references therein for further details.)
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The class of SEMs proposed here makes it possible to simultaneously

estimate theoretical statements (which contain latent variables only) and

correspondence statements (which contain both latent and observable vari-

ables). Particularly, a SEM is made up of two related sub-models:

- A structural model which represents the relationships between the

latent variables.

- A latent variables measurement model which represents the relation-

ships between the latent variables and their observable indicators.

The approach we are proposing here is to replace the spatially lagged

variables Wy (spatial lag model) or Wx (spatially lagged exogenous vari-

ables) in the structural model by latent variables and to model the relation-

ship between a latent spatially lagged variable and its observed variables

in the measurement model. Since one latent variable can be measured by

several indicators, this approach allows for the straightforward inclusion

of several kinds of spatial dependence in the model. For instance, for a

given latent variable representing spatial dependence (denoted latent spa-

tial dependence variable in the sequel) , say investment, investments of the

nearest and next nearest neighbour and distance weighted investments in

the core regions could be indicators. In addition to testing overall spatial

dependence in the structural model via a test of the significance of the

coefficient of the latent spatial dependence variable (similar to the con-
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ventional approach of testing the significance of the coefficient of Wy or

Wx), the model set up would allow further testing, e.g. of distance decay

via the measurement model (for example, whether or not the third near-

est neighbour and beyond exert influence). We observe that this is in line

with Getis and Aldstadt’s (2004) suggestion that spatial structure should

be considered in a two-part framework: those units that evoke a distance

effect, and those that do not.

Our approach also allows for several different types of contiguity in-

cluding non-spatial contiguity. For instance, it allows the inclusion of sim-

ilarity relationships, e.g. the relationships between regions that are eco-

nomically and demographically similar (see Case et al., 1993). This is

because the framework allows measurement by several sets of indicators,

e.g. contiguity and similarity. Alternatively, several latent spatial depen-

dence variables can be included in the structural model with corresponding

observed variables in the measurement model.

The following observations apply. First, conventional W-based spa-

tial econometric modelling also allows inclusion of various types of spatial

dependence in the model, e.g. first and second order contiguity. How-

ever, as observations on neighbours tend to be strongly correlated, this is

likely to lead to multicollinearity. In our SEM approach this problem is

mitigated because of the presence of the latent spatially lagged variable in
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the structural model rather than the observed variables that are respon-

sible for the multicollinearity problem. Since the observed variables are

dependent variables in the measurement model (see equations (2) and (3)

below), multicollinearity is not a problem in this model either. Secondly,

the approach proposed here is not only instrumental to obtaining consis-

tent, unbiased and efficient estimators by controlling for spatial dependence

but also provides substantive information. Particularly, it does not only

allow estimating and testing of the overall impact of spatial dependence

via the coefficient of the latent spatial dependence variable but also of e.g.

distance decay via the coefficients in the measurement model.

This paper is organized as follows. In section 2 we briefly introduce

the class of SEMs. In section 3, in a bid to show that standard spatial

dependence models can be routinely estimated by SEM software (after

correction of the likelihood), we specify the lag model as a SEM and es-

timate it for Anselin’s (1988) Columbus, Ohio, crime data set applying

the SEM software package Mx. In section 4 we present the latent variable

approach to the spatially lagged dependent variable model such that in

the structural model Wy is replaced by a latent variable while in the mea-

surement model the latent spatially lagged dependent variable is related to

its indicators, i.e. observables in neighbouring units of observation. The

model is applied to the Columbus, Ohio, crime data set again and com-
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pared to the benchmark model estimated in section 3. Section 5 concludes

the paper.

2. The Structural Equation Model (SEM)

A SEM, as introduced by notably Jöreskog (1977), reads:

η = Bη + Γξ + ζ with cov(ξ) = Φ, cov(ζ) = Ψ , (1)

y = Λyη + ε with cov(ε) = Θε , (2)

x = Λxξ + δ with cov(δ) = Θδ . (3)

where (1) is the structural model and (2) and (3) are the measurement mod-

els of the endogenous and exogenous latent variables, respectively. In the

structural model the vector η contains the endogenous latent variables and

the vector ξ the exogenous latent variables, B specifies the structural rela-

tionships among the latent endogenous variables and Γ contains the effects

of the latent exogenous on the latent endogenous variables. Φ is the covari-

ance matrix of ξ and Ψ of the errors in ζ. In the measurement equations

(2) and (3) the Λ-matrices contain the loadings or regression coefficients of

the observed variables on the latent variables, and the Θ-matrices contain

the measurement error covariance matrices. The measurement errors in ε

and δ are assumed to be uncorrelated with one another as well as with

the structural errors in ζ and the ξ. Moreover, the structural errors are
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assumed uncorrelated with the exogenous latent variables in ξ. Finally, all

errors are assumed to have expected value equal to zero.

We observe that several or all of the latent exogenous or endogenous

in the structural model may be observed variables. For those cases an

identity relationship holds in the corresponding measurement equation.

Several estimators for SEMs have been developed including instru-

mental variables (IV), two-stage least squares (TSLS), unweighted least

squares (ULS), generalized least squares (GLS), fully weighted (WLS) and

diagonally weighted least squares (DWLS), and maximum likelihood (ML).

These estimators are available in the software packages Mx (Neale et al.,

2003) and LISREL 8 (Jöreskog and Sörbom, 1996). These packages also

include procedures to check model identification, to evaluate the estima-

tion results and to calculate indirect and total effects. Especially Mx, a

program that can be downloaded for free from internet, is very flexible

and offers an extensive matrix algebraic toolbox. It also allows to impose

various linear and nonlinear constraints on the model parameters and to

modify and extend the likelihood-function in a user-defined way. Finally, it

makes it possible to account for missing values by an individual likelihood

procedure (Neale, 2000).

Below we restrict ourselves to the ML estimator, which maximizes the

loglikelihood function of the free elements in the 8 parameter matrices in
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(1)-(3) for given data Y:

`(θ|Y) = −N

2
ln | Σ | −N

2
tr(SΣ−1) − pN

2
ln 2π . (4)

θ in (4) contains the parameters to be estimated in the 8 matrices , Y(N×p)

is the data matrix (N rows of independent replications of the p-variate

vector y, typically originating from a sample of randomly drawn subjects)

and Σ(p×p) is the model-implied covariance or moment matrix (which is a

function Σ(θ) of θ):

Σ =

[
ΛyH(ΓΦΓ′ + Ψ)H′Λ′

y + Θε ΛyHΓΦΛ′
x

ΛxΦΓ′H′Λ′
y ΛxΦΛ′

x + Θδ

]
with H = I− B, (5)

Finally, S(p×p) = 1
N
Y′Y is the sample covariance or moment matrix.

The ML-estimator θ̂ = argmax `(θ|Y) chooses that value of θ which

maximizes `(θ|Y). If the observed variables follow a multivariate stan-

dard normal distribution, maximization of `(θ|Y) gives genuine maximum

likelihood estimates. In the case of deviation from normality the standard

errors produced by LISREL 8 and most other SEM programs should be

interpreted with caution. The same applies to various statistics for model

fit judgement, especially χ2.

Instead of maximizing the loglikelihood function in (4) standard soft-

ware for SEM estimation usually minimizes the fit function

FML = ln | Σ | +tr(SΣ−1) − ln | S | − p (6)
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or χ2 = (N − 1)FML with the same result. Because the data-based matrix

S is a constant, (4) and (6) relate linearly.

As an introduction to the next section, we consider the vector of exoge-

nous variables ξ in (1) as fixed and observed. In that case the loglikelihood

function (4) reduces to (Oud, 2004):

`(θ|Y0) =

−N

2
ln | Σ0 | −

1

2

N∑
i=1

(y0i − µ0i)
′Σ−1

0 (y0i − µ0i) −
p0N

2
ln 2π , (7)

where the subscript 0 of Y0, y0, and µ0 indicates that the exogenous

variables are fixed and observed, p0 is the number of observed variables in

Y0 and y0, and

µ0 = E(y0) = Λy(I− B)−1Γx , (8)

Σ0 = E[(y0 − µ0)(y0 − µ0)
′] = ΛyΨΛ′

y + Θε . (9)

3. SEM representation of the observed spatial lag model

Before going into detail we observe that below it is important to dis-

tinguish between the traditional definition of a SEM in terms of variables

(as in (1)-(3)) and a SEM defined in units of observation. If a vector refers

to units of observation, it will denoted by a tilde ˜. Otherwise it refers to

a vector of variables. Similarly for matrices.
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We consider the standard (one equation) spatial lag model in units of

observation:

ỹ = ρWỹ + X̃γ + ε̃ , (10)

where

ỹ is the (N × 1) vector with observations of the dependent variable y;

W is the (N × N) contiguity matrix;

X̃ is the (N × q) matrix of observations of the q explanatory variables;

ε̃ is the (N × 1) vector of stochastic disturbances;

ρ is the spatial dependence parameter measuring the average influence of

contiguous observations on y;

γ is the q×1 vector of regression coefficients of the q explanatory variables.

In SEM notation (10) reads

y = ρ y
W

+ γ ′x + ε , (11)

where y
W

is the spatially lagged dependent variable and x the vector of

exogenous explanatory variables.

To develop a consistent and unbiased estimator of model (11) we need

to take into account that the spatial lag variable y
W

is a transformation

Wỹ of the dependent variable and therefore cannot be assumed to be
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uncorrelated with the error term. As a first step we write model (11) as

(Aỹ − X̃γ) = ε̃ where A = I− ρW (12)

Transformation of the vector of error terms to the vector of dependent vari-

ables leads to the addition of the Jacobian term ln |A| to the loglikelihood

function (8). For the one-equation case this leads to

`(θ|ỹ) = ln | A | −N

2
ln σ2 − 1

2σ2

N∑
i=1

(yi − µi)
2 − N

2
ln 2π , (13)

with µi = ρ y
W i + γ ′xi and the subscript i denoting individual observation

i. (13) shows that the component ln |A| is just added to the standard

univariate loglikelihood. The SEM program Mx allows this component

to be added to the standard fit function straightforwardly. Observe that

as Mx minimizes χ2 = (N − 1)FML = −2(N−1
N

)[`(θ|Y) + constant], the

correction to be applied to obtain the maximum likelihood solution by

means of the Mx program is

−2(N−1
N

) ln |A| . (14)

We apply the SEM model to the Anselin (1988) crime data set

which relates crime to income and housing value for 49 contiguous neigh-

bourhoods in Columbus, Ohio. The data matrix Y and contiguity

matrix W have been obtained from Anselin (1988) and from website
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http://www.spatial-econometrics.com. The spatial SEM analyses are per-

formed by the ML options of the SEM programs Mx and LISREL 8. We

observe that the scope of this data set is limited. However, it is well-known,

frequently used for illustrative purposes (e.g. Hepple, 1995) and limited in

number of variables. These features facilitate highlighting the basic objec-

tives of the illustration, and comparison of the estimates obtained by Mx

to the outcome obtained by conventional software packages.

The (49 × 5) data matrix [ỹ Wỹ X̃] consists of the five columns

y (crime), y
W

(spatially lagged crime), x1 (income), x2 (housing value),

and 1 (unit variable). Because of the presence of the unit variable, the

sample moment matrix S has the variable means in the last row and last

column. In a one-equation model with observables only, Λy = Λx = I,

Θε = Θδ = 0, B = 0, such that the model implied moment matrix (5)

reduces to

Σ =

[
ΓΦΓ′ + Ψ ΓΦ

ΦΓ′ Φ

]
. (15)

The matrices Γ, Φ, and Ψ in (15) read
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y
W

x1 x2 1

Γ = [ ρ γ1 γ2 γ0 ] ,

y
W

x1 x2 1

Φ =


E(y2

W
)

E(y
W

x1) E(x1
2)

E(y
W

x2) E(x2x1) E(x2
2)

µy
W

µx1 µx1 1

 ,

Ψ = σ2 .

Observe that in a model with observables only, the estimated moment

matrix of the explanatory variables is equal to the corresponding sample

moment matrix.

The total number of parameters to be estimated (including the 1

in Φ) is 15, while also the number of nonidentical elements in the 5 × 5

sample moment matrix S is 15. This would make the model just identified.

However, the presence of ln |A| in the loglikelihood puts a restriction on

the model such that the degrees of freedom (df) = 1.

In Table 1 we present the estimates for model (10), specified as a SEM

and estimated by Mx. We also present the results obtained by Anselin

(1988) and Anselin and Bera (1999). In addition to the parameter esti-

mates the Mx program also computes likelihood based confidence intervals

for the parameters (Neale and Miller, 1997). However, we restrict ourselves
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to point estimates and ignore the confidence intervals. (They can be ob-

tained from the authors upon request.) From Table 1 we conclude that

the differences between the values obtained from the SEM-Mx procedure

and Anselin’s procedure are very small and within rounding errors. This

means that the correction of the SEM loglikelihood function for spatial

dependence and subsequent estimation by SEM software like Mx produces

virtually the same estimates as standard spatial econometrics procedures

and software.

SEM-Mx Anselin
ρ 0.431 0.431

γ1 -1.031 -1.032

γ2 -0.266 -0.266

γ0 45.057 45.079

σ2 95.504 95.495

`(θ|Y) -165.413 -165.408

−2(N−1
N

) ln |A| 2.287

corrected χ2 3.036

df 1

Table 1: ML estimates of the observed spatial lag model for the Columbus, Ohio,
crime data set by SEM-Mx and Anselin (1988).

4. Spatial dependence by means of a latent variable
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The model in this section will be referred to as “latent dependence

model”. It replaces the spatially lagged variable y
W

in the standard spatial

lag model by a latent variable η:

y = ρ η + γ ′x + ζ , (16)

and is completed by a measurement equation:

y = Λη + ε (17)

with

y =


y1

y2
...

ym

 , Λ =


λ1

λ2
...

λm

 , Θ =


σ2

ε1
0 0 0

0 σ2
ε2

0 0

0 0
. . . 0

0 0 0 σ2
εm

 . (18)

(Observe that without an appropriate constraint, the loadings λi will not

be identified. For that reason, one often chooses λ1 = 1.)

We assume that the spatially lagged observed variables are chosen

on the basis of theoretical or ad hoc considerations. Moreover, as pointed

out in the introduction more than one spatial feature can be taken into

account. For instance, both the relationships to neighboring regions as

relationships to the core regions could be included.

We first turn to the measurement model. This model is constructed by

means of selection functions or selection matrices Si which select relevant

18



observations from the vector of observations as follows:

ỹ1 = S1ỹ

ỹ2 = S2ỹ

... (19)

ỹm = Smỹ.

That is, S1 selects the values for the first indicator ỹ1, S2 for the second

indicator ỹ2, etc. For example, S1 may be defined as the selector of the

observations on, say crime, in the the nearest contiguous neighbours, S2

of the observations on crime in the next nearest contiguous neighbours, S3

as the spillover of crime from the core, measured, for example, as crime in

the core times aneighbours distance from the core, etc.

For the measurement model we thus obtain:

ỹ1 = S1ỹ = λ1η̃ + ε̃1

ỹ2 = S2ỹ = λ2η̃ + ε̃2

... (20)

ỹm = Smỹ = λmη̃ + ε̃m.

From the above one observes that spatial dependence is captured by

two kinds of parameters, ρ and the λis, whereas in the standard lag model

only the “average” effect ρy
W

shows up. This means that a much richer
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representation and testing of the spatial structure can be obtained than

by way of standard spatial econometric approaches. For instance, it allows

for determining those units that evoke a distance effect and those that do

not, as suggested by Getis and Aldstadt (2004) by testing the significance

of the λi coefficients.

As in the preceding section, the standard SEM loglikelihood function

needs correction so as to account for the presence of the spatially lagged

dependent variable among the explanatory variables. To develop the ap-

propriate loglikelihood function, we first use (20) to express η̃ in terms of

ỹ and ε̃is. Since there are m measurement equations in (20) we get

η̃ = (
1

mλ1

S1 +
1

mλ2

S2 + · · · + 1

mλm

Sm)ỹ

− 1

mλ1

ε̃1 −
1

mλ2

ε̃2 − · · · − 1

mλm

ε̃m . (21)

Next we write (16) in observation unit form to obtain

ỹ = ρ η̃ + X̃γ + ζ̃ . (22)

Substituting the right-hand side of (21) for η̃ in (22) we obtain

(I− ρ

mλ1

S1 − ρ

mλ2

S2 − · · · − ρ

mλm

Sm)ỹ

= X̃γ + ζ̃ − ρ

mλ1

ε̃1 −
ρ

mλ2

ε̃2 − · · · − ρ

mλm

ε̃m .(23)
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For

A = I− ρ

mλ1

S1 − ρ

mλ2

S2 − · · · − ρ

mλm

Sm (24)

(23) can be written

Aỹ − X̃γ = ζ̃ − ρ

mλ1

ε̃1 −
ρ

mλ2

ε̃2 − · · · − ρ

mλm

ε̃m . (25)

Next we standard-normalize the vector of disturbances at the right-hand

side of (25) by pre-multiplication with Ω− 1
2 :

Ω− 1
2 (Aỹ− X̃γ) = ν̃ (26)

where Ω is the covariance matrix of the vector of disturbances

Ω = I(σ2
ζ + ρ2

m2λ2
1
σ2

ε1
+ ρ2

m2λ2
2
σ2

ε2
+ · · · + ρ2

m2λ2
m

σ2
εm

) (27)

and ν̃ the standard normal vector. From (26) it follows that we need to

add ln | A | with A defined in (24) to the loglikelihood function.

The error variance in (27) is a linear combination of the variance of

the disturbance term in the structural model σ2
ζ and of the measurement

error variances, transformed by the squares of ρ, the loadings λi and the

number of indicators chosen, m.

Before turning to the example, we address the feasible parameter

region. As shown by, amongst others, Anselin (1988, pp.78-79) the feasible
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range of ρ in the standard, W-based, model is determined by the constraint

that the determinant of A = I − ρW is positive, which implies that the

feasible range of ρ is determined by the eigenvalues of W. For instance, for

row-standardized W the range for ρ is from +1 to −(1/ωmax) where ωmax

is the maximum eigenvalue of W (Anselin, 1988, pp. 78-79). In terms of

estimation this implies that the non-linear search across ρ-values should

be within the feasible parameter range. From (24) it follows that in the

latent variable approach the determinant of A is dependent on ρ, m, as

well as various λs. Moreover, instead of one W there are several selection

matrices S1,S2, . . . ,Sm. Constrained estimation such that the parameters

are within the feasible parameter range can be achieved by imposing the

constraint | A | > 0. In addition, further constraints derived from theory

can be imposed, e.g. distance decay such that λ1 > λ2 > . . . λm. The Mx

program allows imposing these constraints straightforwardly.

Rather than imposing the constraints ex ante, it is preferable to start

with unconstrained estimation and to test whether or not the parameter es-

timates are within the feasible parameter region, since this allows detecting

misspecification. As shown by, amongst others, Leamer (1978) misspeci-

fication may show up in implausible or infeasible estimates. Constrained

estimation may invalidate this vehicle of diagnostic checking. Only if there

is no evidence of misspecification and parameter estimates are outside the
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feasible parameter region, constrained estimation is an option.

Below we illustrate the proposed approach using the Columbus crime

data set again. We shall show that the latent dependence model allows a

much richer representation and testing of the spatial structure. Moreover,

we shall discuss how the estimation results compare to those obtained by

standard procedures. For that purpose we present two models: one based

on three first-order contiguity neighbours ordered by distance (Model3)

and one on six (Model6). The first selection in Model3 is possible for all

neighbourhoods except seven which only have two contiguous neighbours.

For these cases we select the nearest non-contiguous neighbourhood. In

Model6, we also select the fourth, fifth and sixth neighbour, when present.

Again, if not present, we supplement the set of neighbours by the nearest

non-contiguous neighbourhoods. So, the selection matrices (19) are based

on contiguity and distance such that for each region the three (six) nearest

contiguous or non-contiguous neighbourhoods are selected. Hence, S1 as

the selector of the nearest contiguous neighbour, S2 of the next nearest

contiguous neighbour, S3 of the third nearest contiguous or non-contiguous

neighbour, etc. The variables thus formed will be called Crime-neighbour1,

Crime-neighbour2, etc.

Whereas the observed spatial lag model in the previous section only

includes the parameter matrices Γ, Φ, and Ψ, the latent dependence model
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additionally contains the measurement model matrices Λ and Θ. The

parameter matrices Γ, Φ, and Ψ are the same as in the observed spatial lag

model (see below equation (15)). However, y
W

is replaced by η. (Observe

that as is customary in factor analysis, the mean of the latent η is fixed at

zero.)

We now turn to the number of degrees of freedom (df). The matrices

Γ, Φ, and Ψ contain 14 parameters that need to be estimated: ρ, γ1, γ2, and

γ0 in Γ, 6 moments and 3 means in Φ, and σ2
ζ in Ψ. For Model3 there are

an additional 8 unknown parameters in the measurement model matrices

(2 loadings λi, 3 measurement error variances σ2
εi
, and 3 means). Model3

contains 7 observed variables which gives 28 non-identical elements in the

observed moment matrix. Since the number of degrees of freedom equals

the difference between the number of non-identical elements in the observed

moment or covariance matrix and the number of unknown parameters that

need to be estimated we obtain: df = 28 − 14 − 8 = 6. Moreover, the

Jacobian term results in an extra restriction on the likelihood function

which gives an additional (1) df . Hence, the total df is 7. In a similar vein,

for Model6 we obtain df = 25 (10 observed variables with 55 nonidentical

elements in the observed moment matrix and 17 additional measurement

parameters).

Before turning to the estimation results we present a path diagram of
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Model3 in Figure 1. The most important estimates produced by the SEM-

Mx program are presented in Table 2 (standard errors can be obtained

from the authors upon request). We first turn to the overall fit. Because

its χ2 of 8.940 is slightly higher than its df , the fit of the Model3 is quite

good. For Model6 the χ2 of 23.482 is even lower than the df which means

that its fit is very good.
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Figure 1: Path diagram of Model3: observed variables are indicated by
squares, latent variables by circles, effects by arrows and covariances by
curved lines.

Regarding the estimated parameters we first of all observe that λ1

is fixed at 1 in both models so as to fix the measurement scale of the la-

tent dependence variable. Next we observe that all parameter estimates

are significant. We first turn to the measurement models. On the ba-

sis of distance decay, we expect the loadings of successive neighbours to

go down. This does not happen uniformly due to the non-standardized

character of the loadings, i.e. the measurement error variance is not
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Model3 Model6
ρ 0.521 0.491
γ1 -0.864 -0.885
γ2 -0.249 -0.259
γ0 57.140 57.809
σ2

ζ 79.559 83.432
σ2

η 176.783 167.918
λ1 1 1
λ2 1.040 1.029
λ3 0.959 1.013
λ4 - 0.725
λ5 - 0.756
λ6 - 0.428
σ2

ε1
83.428 (R2 = 0.672) 88.806 (R2 = 0.651)

σ2
ε2

101.621 (R2 = 0.645) 111.642 (R2 = 0.610)
σ2

ε3
163.187 (R2 = 0.486) 149.697 (R2 = 0.529)

σ2
ε4

- 217.475 (R2 = 0.270)
σ2

ε5
- 201.422 (R2 = 0.308)

σ2
ε6

- 186.756 (R2 = 0.104)

−2(N−1
N

) ln |A| 3.768 3.616

corrected χ2 8.940 23.482

df 7 25

Table 2: ML estimates of latent dependence models Model3 and Model6 for the Colum-
bus, Ohio, crime data set by SEM-Mx.

taken into account. However, for the reliabilities, R2=(squared load-

ing)/(total variance)=1−(measurement error variance)/(total variance),

we see a clearer downward trend (except for lambda 4 and lambda 5).

The R2 of Crime-neighbour3 in Model3 is 0.486 which indicates that

more distant neighbours could probably considerably contribute to the ex-

planation of crime in a neighbourhood. This is confirmed in Model6 where
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Crime-neighbour4 and Crime-neighbour5 have R2s of 0.207 and 0.309, re-

spectively. However, the R2 of Crime-neighbour6 of 0.104 indicates that

neighbours beyond neighbour 6 do not exert any further influence on crime

in a given neighbourhood.

For the structural models we find ρ = 0.521 and ρ = 0.491 for Model3

and Model6, respectively, which are somewhat larger than for Anselin’s

observed lag model (see Table 1). The coefficients γ1 and γ2 for income

and housing are close to the ones obtained by Anselin, though in both of

our models the effect of income on crime (γ1) is somewhat smaller and that

of housing value (γ2) somewhat larger than in Anselins model. Finally, the

explanation error variance (σ2
ζ ) is in both models smaller than in Anselin’s

model. Simulation is needed to shed further light on the differences between

both approaches.

6. Conclusion

In this paper we present a structural equation (SEM) approach to

spatial dependence models. As a first step, we adapt the standard SEM

likelihood function such that the conventional lag model can be estimated

in a straightforward fashion by standard SEM software packages. Appli-

cation to the Columbus, Ohio, crime data set (Anselin, 1998) shows that

these packages produce virtually the same estimates as obtained by the
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standard software for spatial dependence models. Special attention is paid

to the SEM software package Mx that allows handling of nonlinearities in

a straightforward fashion.

Next, we introduce the latent spatial dependence approach as an al-

ternative to the conventional W-based approach to represent spatial depen-

dence and spillover effects. Typical for this approach is that Wy is replaced

by a latent dependence variable in the structural model of which observed

variables of spatial dependence are indicators. The latent variables ap-

proach is both more flexible and more informative than the conventional

approach based upon an a priori given spatial weight matrix W. Particu-

larly, it allows handling several different types of spatial dependence in one

model framework and formal testing, e.g. of distance decay so as to identify

the spatial units that evoke a distance effect and those that do not. The

model is applied to the Columbus, Ohio, crime data set again. Although

several parameter estimates obtained are in line with the results obtained

by Anselin (1998), further research, particularly Monte Carlo simulation,

is needed.

The SEM approach to spatial dependence models has several potential

advantages which are worthwhile further exploring. Particularly, it allows

straightforward application to systems of equations. Moreover, it allows

the introduction of several dynamic SEM features into spatial modelling.
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