
 1

SPATIAL EFFECTS ON HOUSING PRICE PREDICTIONS FOR GUARDA CITY 

 

MªJosé Andrade P. Valente               Rui Nuno Baleiras 
ESTG - Instituto Politécnico Guarda                          Escola de Economia e Gestão 
mjvalente@ipg.pt                                                                                    Universidade do Minho 
 

 

 Housing prices are influenced by a variety of physical, tax, proximity, 
neighbourhood and local attributes. Hedonic specifications are able to measure the 
influence of dwelling size and age (and other physical characteristics) on housing prices. 
 This paper examines the influence that local housing market characteristics have on 
price prediction accuracy using hedonic housing price equations with single-family 
transactions for Guarda city. 
 The regression analysis employs cross-section data; in this instance specialized 
methods of spatial econometrics are used to avoid potentially biased results and faulty 
inference.  
 An alternative to a spatial autoregressive process to avoid the complexity of 
definition of the spatial weight matrix can be expressed in the form of autocorrelation tests. 
So we propose the serial correlation LM test – specifically the Breusch-Godfrey Lagrange 
Multiplier test – as a proxy of spatial correlation tests. 
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I. Introduction 
 
 Existing efforts toward political and economic integration have in some cases led to 

a surprising reconsideration of a role for taxes that do not cross borders—taxes on 

immovable property being one of the few that meet this description. The simplicity with 

which capital, technology, and information can be transferred across geographic boundaries 

poses a fundamental challenge to tax systems developed in response to an entirely different 

model of economic activity. At the same time the growth in the economic importance of 

intangible property prescriptions some contemporary policy to a reduction or elimination of 

the tax on real property. So, current property tax reforms face the challenge of identifying 
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the appropriate role for a tax on immobile physical assets in an economy ever more reliant 

on mobile and intangible factors.  

 This is not necessarily the case. In fact, three closely related considerations argue 

for an expanded role for the real property tax in an era of globalization. First, at a time 

when markets and economic activity cross borders with ease, immovable property offers 

one of the few tax bases that cannot be readily shifted to another jurisdiction. Second, in an 

era of tax harmonization, only a purely local revenue source permits local fiscal autonomy. 

Third, globalization has drawn renewed attention to the goals of devolution and 

subsidiarity, which require stable local revenue sources to be effective. Each of these 

factors influences and reinforces the others. The mobility of capital, sales and labour 

encourages harmonization or convergence in response to tax competition. A period of 

globalization also places a great premium on preserving accountable, independent local 

governments to deal with those tasks for which they are best suited. 

 The property tax can offer a stable revenue source particularly well suited for local 

government. At the same time, it requires administrative capability, legislative support and 

political acceptance that are often lacking in highly developed and long established systems 

as well as in transition economies. Technological advances offer potential efficiency gains 

in assessment, administration and collection, but they can also consume vast sums for 

glamorous but inappropriate projects that yield little additional revenue. 

 International economic and political integration, far from diminishing the role of 

local governments, has heightened attention to the importance of independent, accountable 

and responsive subnational governments. The greatest political drawback to a centralized 

intergovernmental apparatus such as the European Commission may be a lack of 

accountability. So the efficiency of centralization must be tempered by political 

representation and responsiveness. The property tax offers an independent revenue source 

particularly suited for local governments, permitting the option of decentralized rate-

setting, administration, and collection. The highly visible nature of the property tax is its 

greatest political burden, yet also its most important contribution to transparent, politically 

accountable taxing and spending decisions. 
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 The property tax offers an independent revenue source particularly suited for local 

governments, permitting the option of decentralized rate-setting, administration, and 

collection. The highly visible nature of the property tax is its greatest political burden, yet 

also its most important contribution to transparent, politically accountable taxing and 

spending decisions. 

 Assuring equitable assessment values among properties for taxation purposes is an 

important problem. One cannot, of course, ignore the abundant evidence that tax appraisal 

are often arbitrary and inequitable – in the Portuguese case, the situation with property tax, 

in 2002, demonstrated substantial vertical and horizontal inequities in tax assessment 

practices. 

 The assessor’s primary responsibility is, after all, to provide for equity in assessed 

valuations so that the property tax burden is fairly distributed which requires that all 

properties in each property class be valued at the same ratio. Value-based taxes on 

immovable property are a natural target for taxpayer dissatisfaction. They are highly 

visible, generally not withheld from income, and not necessarily accompanied by cash 

earnings with which to make payment; so the public perception of the tax as regressive 

charge. 

 Regression analysis can be used to provide a hedonic price as a function of the 

characteristics of a property and this seems a good approach to make available the attributes 

of both equity and efficiency to process of assessment. The application of regression 

analysis to the housing’s attribute data would assure consistency and could facilitate an 

analysis of the relationship of assessment values to selling prices of the properties if the 

parameter estimates were divided from a model based on sales data. The objectives of 

consistency, equity and market value thereby would be simultaneously served in the 

process of determining the assessed values. 

 The method of predicting house values using ordinary least squares (OLS) as the 

statistical technique to estimate a hedonic regression, sometimes, ignores a potentially large 

source of information regarding house prices—the correlations existing between the prices 

of neighbouring houses. From the theoretical point of view spatial autocorrelation seems to 

be a common phenomenon on real estate markets, although, it is not very often included in 

classical models constructed in purpose of describing the behaving of particular market. 
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This paper investigates the sensitivity of hedonic models of house prices to the spatial 

autocorrelation to address them to typical hedonic real estate data, if necessarily. One can 

improve efficiency by assigning spatial effects, since we gain insight into the size of bias 

that can occur in parameters. So, the purpose of this paper is to explore some of the issues 

involved in estimating housing models with spatially autocorrelated error terms. Section II 

introduces the housing market and discusses the price of a property as a function of values 

describing its characteristics, known as the hedonic price function,1 Section III estimates 

the resulting hedonic regression after discusses the functional form, while Section IV 

concludes with the basic issues involved in modelling the autocorrelation structure and 

compare by difference the most commonly used techniques. 

 

 

II. Housing Markets 

 

 One of the most familiar models in economics is that of price determination in the 

market. The market mechanism works to reconcile the needs of consumers and firms by 

establishing the price at which aggregate demand is equal to aggregate supply and the 

market clears. For many goods, however, this simple model is inadequate. In a market such 

as that for housing we observe different properties commanding different prices. Indeed, 

housing is an example of what is called a differentiated good. Such goods consist of a 

diversity of products that, while differing in a variety of characteristics, are so closely 

related in consumers’ minds that they are considered as being one commodity. 

 Though the simple model does not adequately explain the workings of markets in 

differentiated goods, it would appear market forces determine that different varieties of the 

product command different prices and that these prices depend on the individual products’ 

exact characteristics. For example, properties that have more bedrooms will tend to 

command a higher price in the market than properties that have fewer bedrooms. 

Furthermore, the set of prices in the market would appear to define a competitive 

                                                 
1 “Hedonic” because it is determined by the different qualities of the differentiated good and the utility 
derived from their consumption. 
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equilibrium. That is, in general, the market will settle on a set of prices for the numerous 

varieties of the differentiated good that reconcile supply with demand and clear the market. 

 Clearly the set of properties in the market represent a differentiated good. We could 

describe any particular property by the qualities or characteristics of its structure, environs 

and location. A succinct means of denoting this is as a vector of values; effectively a list of 

the different quantities of each characteristic of the property. In general, therefore, the 

vector could describe any house, 

 

                                               1 2z     ( , , ..., )kz z z=  

 

where   1, , ...,iz i k= , is the level or amount of any one of the many characteristics 

describing a property. Indeed, the vector z completely describes the services provided by 

the property to a household. When households select a particular property in a particular 

location they are selecting a particular set of values for each of the iz . We can imagine this 

market for properties as being one in which the consumers consider a variety of somewhat 

dissimilar products which differ from each other in a number of characteristics including, 

amongst many characteristics, number of rooms, size of garden, distance to shops and 

environmental characteristics such as levels of pollution or noise. 

 The price of any one of these properties will be determined by the particular 

combination of characteristics it displays. Naturally we would expect properties possessing 

larger quantities of good qualities to command higher prices and those with larger 

quantities of bad qualities to command lower prices. Again we can use a succinct piece of 

notation to illustrate this point; 

 

                                                      zP( )P =  

 

Which can be read as; the price of a property, P, is a function of the vector of values, z, 

describing its characteristics. This function is known as the hedonic price function; 

‘hedonic’ because it is determined by the different qualities of the differentiated good and 

the ‘pleasure’ (in economic terms utility) these would bring to the purchaser. 
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 A number of researchers (e.g. Rosen, 1974; Epple, 1987) have attempted to 

analytically model equilibrium in hedonic markets. To do this it is necessary to make 

specific assumptions concerning the various behavioural functions that determine 

household and landlord behaviour. Specifically, researchers must assert a particular 

functional form for the utility function of households, U(.) , and the cost function of 

landlords, C(.) . Further they have to make assumptions concerning the distribution in the 

population of household characteristics, s, and landlord characteristics, r. Given specific 

forms for each of these different functions it should be possible to solve for an expression 

that gives the equilibrium hedonic price function. This expression will be a function of the 

arguments in the underlying functions. Hence, using such models it is possible to 

investigate how changes in the underlying arguments influence the hedonic price schedule. 

 Unfortunately, the complexity of the hedonic market is such that one must make 

very restrictive assumptions concerning the various functions in order to end up with an 

expression for the hedonic price schedule that is reasonably tractable. In general, therefore, 

research has concentrated on empirical analyses of hedonic markets. 

 In many ways, the problem for empirical analysis is the reverse of analytical 

research. Rather than assuming the functional forms of the underlying behavioural 

functions and working through the problem to solve for the hedonic price schedule, 

researchers estimate the hedonic price schedule from real world market data and work back 

through the problem to discover the form of the underlying behavioural functions. We shall 

return to how this might be achieved in Section III. 

 

 

III. Functional Form 

 

 Many functional forms of the variables and parameters lead to pricing functions that 

agree with the information amassed by the substantial theoretical and empirical work in 

hedonic pricing and mass assessment. Consequently, the exact specification to adopt 

remains one of the central uncertainties of empirical work, especially since the ‘‘wrong’’ 

functional form leads to all sorts of disastrous consequences for traditional estimators. In 

response to this problem, many nonparametric estimators have been proposed which adapt 
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to the data and do not require an a priori functional specification. However, nonparametric 

estimator performance typically declines as the dimensionality of the problem increases. As 

a compromise, various semiparametric estimators have arisen that possess the adaptive 

traits of nonparametric regression while retaining the estimation efficiency of parametric 

estimators. 

 Many functional forms have been proposed and used for hedonic property models 

including linear, quadratic, log-log, semi-log, inverse semi-log, exponential, and Box-Cox 

transformation. Theory only suggests that the first derivative of the hedonic price function 

with respect to the characteristic in question be positive (negative) if the characteristic is 

desirable (undesirable). Properties of the second derivative cannot be deduced from the 

general features of the model (Freeman, 1993). Popular methods to select the functional 

form include using a linear relationship and altering any variables which are believed a 

priori to be nonlinear and using flexible forms (e.g. Box-Cox Transformations) to 

determine the best fit (Kulshreshtha and Gillies, 1993). 

 A good way to establish a model is to use cross-validation.2 To determine the best 

model we use a goodness of fit index, the average mean average error, average-MAE. This 

is our option. Despite complex functional forms and sophisticated regression techniques we 

are used 400 observations on house sales, in 2002, from Guarda city, to illustrate applicable 

techniques for hedonic house price estimation. By going from a benchmark linear 

specification to logarithmic functional forms and Box-Cox transformations, the mean 

average error, MAE,3 in 1000 regressions can be reduced significantly. The best results 

however can be achieved using a semi-log model. The average MAE indicates a 14,2% 

reduction in the prediction error: from 12552,243 on the benchmark linear model to 

10793,232 in the log-linear specification. 

 

 

                                                 
2 Cross-validation refers to the process of removing one of the n observation points and using the remaining 

1n −  points to predict its value. This process is repeated at each data point; for each estimate, 1n −  points 
are used. The interpolation error at each data point is the difference between its observed and predicted 
values. 

3 
1

1 ˆ
T

t t
t

MAE P P
T =

= −∑ , where t̂P  is the expected price, tP is the observed price and T  is the number of 

estimations. 
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 Linear 
Model 

Log-linear 
Model 

Log-log 
Model 

Quadratic 
Model 

BoxCox 
linear 
Model 

BoxCox 
Quadratic 
Model 

Average-MAE 12552,243 10793,232 12323,039 11294,027 10983,189 11110,866 

 

The formal econometric model is stated as:4 
 

 

( ) ( ) ( )

( ) ( ) ( )

(86,743) (-5,654) (0,123) (3,859)

2,467 0,923 0,608

-0,916 0,058 2,398

10,733- 0,0140 *   0,0029* 0,0035*

0,068* 0,0361* 0,0200* -

0,0167*  0,0040* 0,0618*

LNVMERCADO ANOS AQCENTRAL AREA

QUARTOS CBANHO ARRECA

ELEV EXPSOL G

= + +

+ + +

− + +

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2,515 2,531 -0,436

1,841 -1,048 0,468

-2,087 -0,220 0,038

-1,

  

0,1246*   0,0623*  -  0,0093*

0,0646*  - 0,0578* 0,0317* -

-0,1091*   -  0,0138* 0,0020* -

-0,0827

CANAL

GSDOS GSUM JANDUPLAS

LAR LCNTRO LCVLHOS

LGGARE LLAMNH LLUZ

+

+ + +

+ +

+

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

474 -1,334 0,197

-0,426 -0,611 -0,753 1,206

-0,734 1,136 0,726

* -  0,0777*  0,0113* -

-0,0233* - 0,0407*  -  0,0281*   0,0329*

-0,0399* - 0,0455* 0,0233*

LPMILEU LPNHR LRDIZ

LSREMD CV RCH PPR

PQRT PSEG PTERC
−

+

+

+

 

 

                    2 2  R  = 0,625821                             R  Adjusted= 0,597581 
 

 

IV - Spatial Dependence 
 

 Spatial dependence among hedonic regression residuals was iniatially revealed by 

Brigham (1965) who carried out topographic error projections. Sibert built a model of 

residential values based on spatial autocorrelation but did not adopt the hedonic conceptual 

                                                 
4 The variables are identified in Annex I 



 9

framework. Anas and Eum (1984) assumed the absence of spatial autocorrelation but 

implicitly incorporated a spatial autoregressive term; they used the most recent nearby sale 

as a temporal proxy. Dubin (1988) carried out a formal verification of the existence of 

spatial dependence among the hedonic regression error terms. Since the end of 80’s there 

has been a marked increase in studies highlighting concerns about spatial autocorrelation.  

 In fact the hedonic model remains a reflection of the price formation mechanism, 

since housing price translates the marginal utility of the housing’s characteristics over all 

characteristics; so neighbouring house prices correspond to the combined effect of the 

individual preferences of the other consumers. According to this assumption, the price of 

neighbouring houses can be interpreted as a local quality factor that interprets both location 

characteristics and physical factors shared by neighbouring houses. 

 The consequences of spatial autocorrelation are the same as those of time series 

autocorrelation: the OLS estimators are unbiased but inefficient, and the estimates of the 

variance of the estimators are biased.5 Thus the precision of the estimates as well as the 

reliability of hypotheses testing can be improved by making a correction for 

autocorrelation. Once the structure of the autocorrelation has been estimated, this 

information can be incorporated into any predictions, thereby improving their 

accuracy.6Just as with time series autocorrelation, maximum likelihood (ML) techniques 

are commonly used to estimate the autocorrelation parameters and the regression 

coefficients.7  

                                                 
5 Unbiased and consistent estimation by OLS requires that error term and regressors are uncorrelated. This 
assumption is violated when, 
• The ‘spatially lagged’ or ‘average neighbouring’ dependent variable (housing price) WP  is correlated with 
the unobserved error term: 
                                          WP W I W Z W I W1 1( ) ( )ρ β ρ ε− −= − + −  

• The matrix, W I W 1( )ρ −− , does not have all zeros on leading diagonal, hence 

                                            W I W P1' ( ) 0ε ρ −⎡ ⎤− ≠⎣ ⎦E  
Efficiency of OLS, and correct standard errors requires that error term is homoscedastic and has no 
autocorrelation, i.e. 
                                                I' 2( , )ε ε σ= Ω = vE  
6 This technique is known as kriging in the geostatistics literature and best linear unbiased prediction (BLUP) 
in the econometrics literature. Dubin (1992) and Basu and Thibodeau (1998) use this technique to predict 
housing prices. Also, Dubin (1998) and Dubin et al. (1998) discuss the issues involved in kriging. 

7 With the log-likelihood function, 
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 Despite the similarities, spatial autocorrelation is conceptually more difficult to 

model than time series autocorrelation, because of the ordering issue. In a time series 

context, the researcher typically assumes that earlier observations can influence later ones, 

but not the reverse. In the spatial context, an ordering assumption such as this is not 

possible: if A affects B, it is likely that the reverse is also true. Also, the direction of 

influence is not limited to one dimension as in time series, but can occur in any direction 

(although we generally restrict the problem, at least in the case of housing, to two 

dimensions). 

 A method for modelling the autocorrelation structure is to depict the process itself. 

This approach is based on the work of geographers (Cliff and Ord, 1981) and requires the 

use of a weight matrix. This approach is probably the more common of the two in the real 

estate literature (see Can (1992) and Pace and Gilley (1998) for examples).8 The first task is 

quantification of the location aspects of our sample data. Given that we can always map a 

set of spatial data observations, we have two sources of information on which to draw: One 

source of information is the location in Cartesian space represented by latitude and 

longitude. This information would also allow us to calculate distances from any point in 

space, or the distance of observations located at distinct points in space to observations at 

other locations. If the relationship we are modelling varies over space, observations that are 

near should exhibit similar relationships and those that are more distant may exhibit 

dissimilar relationships. The second source of location information is contiguity, reflecting 

                                                                                                                                                     
                                   [ ]2 2 21 1V 2 P Z P Z2 2( , , ) ln ln( ) ( ) ' ( )L n Vρ β σ πσ σ β β−= − + − −     where V   

equals I W I W( ) '( )ρ ρ− − . The maximum likelihood method efficiently estimates the model asymptotically 
(given the assumptions hold). 

8 The usual prediction of the dependent variable, P Zβ ε= +  is correct by a weighted average of the errors 
on nearby properties as in,    P Z W P Z( )β ρ β ε= + − + , where W  represents an 400 by 400 comparable 
weighting matrix with 0s on the diagonal (the observation cannot predict itself). The rows of W sum to 1 as 
implied by below. The non-zero entries on the ith row of W  represent the observations whose errors interact 
with the error on the ith observation. We assume independent, 0 mean errors from a normal distribution. 
These assumptions appear in, 
                                           (a)    [ ] [ ]

400 400 400 1 400 1
 1 1

( * ) ( * ) ( * )
W =  

                                           (b)     [ ]
400 1

 0
( * )

( )diag W =  

                                           (c)       0 1ρ≤ <  

                                           (d)     I2(0, )εε σN  
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the relative position in space of one regional unit of observation to other such units. From 

this we can determine which units are neighbours (have borders that touch) or represent 

observational units in reasonable proximity to each other. 

 In our case we wish to construct a 9 by 9 binary matrix W  containing 81 elements 

taking values of 0 or 1 that captures the notion of “connectiveness” between the nine 

entities (different neighbourhoods in Guarda city) depicted in the map configuration below,  

  
 

 

 

 We record the contiguity relations for each area in the row of the matrix W . For 

example the matrix element in row 1, column 2 would record the presence (represented by 

a 1) or absence (denoted by 0) of a contiguity relationship between places 9 and 8. As 

another example, the row 3, column 4, element would reflect the presence or absence of 

contiguity between places 7 and 5. Of course, a matrix constructed in such fashion must be 

symmetric — if regions 7 and 5 are contiguous, so are regions 5 and 7. 

 It turns out there are a large number of ways to construct a matrix that contains 

contiguity information regarding the regions. Below, we define a binary matrix W  that 

      Centro 
              9 

Luz 
 
   5 

Guarda Gare 
           1

Cast. 
Velhos 
    6 

Lameirinhas 
         8 

Srª Remédios 
         7 

Povoa 
Mileu    4 

Pinheiro 
      2 R.Diz   3 
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reflects the “linear contiguity” relationships between the nine entities in figure above. So 

we define   1 ijW =  for entities that share a common edge to the immediate right or left 

of the region of interest and  0 ijW =  otherwise. 

 Then the matrix W  shows the first order linear’s contiguity relations for the nine 

zones,  

                             W

0 1 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 1 1

0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 1 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úë û

 

 

 Note that W  is symmetric, and by convention the matrix always has zeros on the 

main diagonal. In applied work a transformation often used converts the matrix W  to have 

row-sums of unity; so we can obtain a standardized version of W   

 

                    

0 1 4 1 4 1 4 1 4 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 2 0 0 0 0 1 2 0 0 0

0 0 0 0 1 4 0 1 4 1 4 1 4

0 0 0 0 0 1 2 0 0 1 2

0 0 0 0 0 1 2 0 0 1 2

0 0 0 0 0 1 3 1 3 1 3 0

W

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úë û
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 The motivation for the standardization can be the possibility to obtain a new 

variable,  

                                                ( )i ij j
j

m P w P= ∑   

equal to the mean of observations from contiguous regions as shown in, 
 
                                  9 8 7 6 5

1 1 1 1( ) 4 4 4 4m P P P P P= + + + , 

                                  8 7 6 9( ) ( ) ( )m P m P m P P= = =  

                                   5 9 4
1 1( ) 2 2m P P P= +  

                                   4 5 3 2 1
1 1 1 1( ) 4 4 4 4m P P P P P= + + +  

                                   3 1 4
1 1( ) 2 2m P P P= +  

                                   2 1 4
1 1( ) 2 2m P P P= +  

                                   1 3 4 2
1 1 1( ) 3 3 3m P P P P= + +  

 
 This new variable is important to calculate Moran’s I, which allow us to test, in a 

statistical sense, for unevenness in the spatial distribution of some characteristic z , 

 

    ( , ( ))
( )

i i

i

Cov P m PI
V ar P

= 9 

 

 In space, the error variances are also heteroskedatic; wich is not the case in the time 

domain (Anselin and Bera 1998). The heteroskedasticity is induced by the spatial process 

and will complicate specification testing (i.e. distinguishing “true” heteroskedasticity from 

that induced by a spatial process).  

 In our case the problem is not present. To capture heteroskedasticity we can look at 

the residuals of our model and test the hypothesis null of no heteroskedasticity, then the 

                                                 
9 Moran’s I can take any value between –1 and +1. A value close to zero indicates no spatial association: there 
is no systematic relationship between the value of x in any region with that in its neighbours. +1 indicates a 
perfect correlation between the value of x in any region and that in its neighbours. –1 indicates perfect 
negative correlation. In small samples, the expected value of I when there is data is randomly distributed 
across space is 1 . If n is large, this is clearly zero. 
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result of White’s test is carried out by obtaining, [ ]
2 2

32[( * ) 26,6789]n R c= : , which is 

highly significant; so we don’t reject the null of no heteroskedasticity. To increase the 

power of this result we can obtain a more powerful test, the Goldfeld-Quandt test, by 

ordering all observations on the basis of the independent variable suspected of causing 

heteroscedasticity,10 so the test statistic is,  

 

Variables Test G-Q Resultado 

age [203,71] 1, 2507F =  Don’t reject the null of no heteroskedasticity 

area [218,55] 2, 53869F =  Reject the null of no heteroskedasticity 

rooms [197,77] 2, 47512F =  Reject the null of no heteroskedasticity 

bathrooms [197,77] 2, 401797F =  Reject the null of no heteroskedasticity 

 

 The results are heterogeneous; they recommend the introduction of Glesjer’s Test. 

In each case, the test for the specific context of variables, “old”, “rooms”, “bathroom” and 

“area”, suspected of causing heteroscedasticity provide the results, 

(i) [ ]4, 395 1, 4723F = , when the functional formulation  is linear; 

(ii) [ ]4, 395 0, 89183F = , when the functional formulation is quadratic;  

(iii) [ ]4, 395 1, 3153F = , when the functional formulation is logarithmic. 

 Finally, we can reject the hypothesis of heteroscedasticity. This is a good 

consequence since we don’t need concerned to distinguish true heteroscedasticity from that 

induced by the spatial process, so the tests against spatial dependence will have more 

power. 

 The most straightforward testing approach is to use Lagrange Multiplier Tests that 

are based on the residuals of an OLS regression. Separate tests are available for a spatial lag 

and a spatial error alternative. Other tests with high power are based on the application of 

Moran’s I to regression residuals, which is a valid misspecification test against a wide 

                                                 
10 For the Goldfeld-Quandt test we assume that the observations can be divided into two groups in such a way 
that under the hypothesis of homoscedasticity, the disturbance variances would be the same in two groups, 
and under this hypothesis the test has an F distribution. 
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range of alternatives and applicable in various econometric specifications ( Kelejian and 

Prucha 1999). 

 However spatial econometric methods are not routinely incorporated in commercial 

software packages. Hence, several authors have developed “tricks” to carry out estimation 

and specification testing using macro or script facilities in statistical computing software. 

Examples are routines in Limdep, Gauss and S-Plus in Anselin and Hudak (1992) and 

maximum likelihood estimation in SAS (Griffith 1993) or Matlab (Pace and Barry 1998). 

 In this case we need expand the weighting matrix, W , to the 400 observations, by 

the construction of a block matrix, and this is a great limitation without specific software; 

so an adaptation is required to achieve the aim without spatial computing software, in way 

to allow the application of the standard autocorrelation tests bid by Eviews 4. 

 In order to apply the principles of the standard autocorrelation tests we have to 

reduce the two-dimensional space in which the regions are located to a one-dimensional 

space like the time dimension.11 Lining up all the regions according to their location does 

this; so that we start from one corner of the Guarda city and then take the nearest 

neighbouring area, and the next-nearest, etc. There is scope for ambiguity here, of course, 

but fortunately we didn’t have to really do this ordering, because the municipalities were 

originally numbered according to location, so we just had to sort all data according to 

municipality number postal. The results are, 

 
Centro Lameiri 

nhas 

SrªRemé

dios 

Castelos 

Velhos 

Luz Povoa 

Mileu 

Rio 

Diz 

Pinheiro Guarda 

Gare 

9 8 7 6 5 4 3 2 1 

 

 When that is done, we can use the large sample Breusch-Godfrey Serial Correlation 

LM test statistic as a proxy for a test of spatial correlation. We make the test with nine 

neighbours, which is also the limit we have chosen for the construction of spatial variables. 

When the null of no spatial correlation were rejected, we tried to include additional spatial 

variables to reduce the correlation problem. This usually helped and the remaining spatial 

correlation problems are small. 

                                                 
11 Starting from an idea developed by Andersen, Lykke and Reis E. (1997) 
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 At the same time we revisit the Moran’s I, already consider above, which is applied 

to residuals; so appears as, ' 'I e e e e= W . We can observe the formal nearness with 

Durbin-Watson12statistic, which presents also similar properties asymptotically comparable 

to LR e LM statistics. 

 The housing model estimation, presented in Section III, by the Ordinary Least 

Squares (OLS), after introducing the alignment of data according the spatial codification 

present in table, establish the value 1, 9981  for the Durbin Watson (DW) statistic. If there is 

no serial correlation the DW statistic will be around 2 . In this case DW statistic will fall 

practically 2, so we don’t reject the null hypothesis of no serial correlation. But there are 

three main limitations of DW test as a test for serial correlations; first the distribution of the 

DW statistic under the null hypothesis depends on the data matrix Z  (the housing 

characteristics matrix); second if there are lagged dependent variables on the right-hand 

side of a regression; finally, you may only test the null hypothesis of no serial correlation 

against the hypothesis of first-order serial correlation.  

 To overcome these limitations we applied one other test of serial correlation – the 

Breusch-Godfrey LM test. The null hypothesis of this test is no serial correlation in the 

residuals up to specified order. In our case study, since the highest contiguous spatial 

relations we can associate are 4 regions, we should introduce a 4 order lag to be tested. 

Eviews4 reports a statistic labelled “F-statistic”, and an “Obs.* 2R ” ( 2NR ),13 0,1565  and 

0, 6811 , respectively. The test doesn’t reject the hypothesis of no serial correlation up to 

order four.14 

 Eviews4 will display the autocorrelation and partial autocorrelation functions of the 

residuals with the Ljung-Box Q-statistics15 for high-order serial correlation. The application 

of these testing procedures produces the following view, 

                                                 
12 ' 'DW e e e e= A , A is a band matrix, 1, 2, 1- - . DW is a test for formal first order serial correlation. 
13 O 2NR  statistic has an asymptotic 2c  distribution under the hypothesis null, the distribution of F-statistic 
is not known, but is often used to conduct an informal test o f the null.   
14 If instead a lag 4, defined as function of the maximum value of space contiguous if it had introduced the 
values of 1, or of 2, or of 3, in test LM of Breusch-Godfrey, we would be continued not to reject the 
hypothesis of inexistence of correlation in series above of order 1, or of order 2, or of order, respectively  
15 The Q-statistics at lag k is a test for the null hypothesis that there is no autocorrelation up to order k and is 

computed as, 2

1
( 2) ( )

k

LB j
j

Q T T T Jt
=

= + -å , where, 2
jt , is the squared of j-th residuals autocorrelation, 
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Autocorrelation Partial Correlation    AC    PAC     Q-Stat.    Prob. 

       .|.      |        .|.      | 1 0.037 0.037     0.5414 0.462 
       .|.      |        .|.      | 2 0.007 0.006     0.5631 0.755 
       .|.      |        .|.      | 3 0.007 0.007     0.5856 0.900 
       .|.      |        .|.      | 4 -0.010 -0.010     0.6232 0.960 

 

 Notice that all Q-statistics are insignificant with large p-values, and at all lags the 

autocorrelations and the partial autocorrelations are nearly zero; so there is no serial 

correlation in the residuals. 

 Our conclusion can achieve best performance if we interpret the Q-statistics as a 
2c distribution, so the results of one 2

[1] 0, 5414c = , one 2
[2] 0, 5631c = , one 2

[3] 0, 5856c =  

and one 2
[4] 0, 6232c = , reveal, for highly significance level, we can accept the hypothesis 

of no autocorrelation. 

 Finally some doubts can exist about the accuracy and precision of the artifice used, 

the transformation of two-dimensional space in a one-dimensional space and the 

consistency of the results produced. To overcome those we try calculating the Moran’s I, 

although the difficulty to create the weight matrix W , 400 by 400, as function of 

contiguous spatial keep going; so we segment the housing sample by the number of rooms 

to obtain efficiency gains from the time of computing results. We choose the two smaller 

sub-segments sample, one the houses with one room, denominated T1, with 33 

observations, the others with four rooms, denominated T4, with 39 observations, both with 

the follow spatial distribution,  

 
 Centro Lanhas SReméd CVelhos Luz PMileu RDiz Pinheiro GGare 

T1 16 3 3 1 1 0 0 0 9 

T4 9 3 4 4 4 1 1 1 12 

 

 The oldest and best test known is Moran’s I for regression residuals, is a locally best 

invariant test, and moments and estimation details are given in Cliff and Ord (1981), and 

Anselin (1988). For those sub-segments the Moran’s I are, 1 0,1786TI =  and 

                                                                                                                                                     
2 2

1 1

T T

j t t j t
t j t

e e et -
= + =

= å å , and T  is the number of observations. Under the null hypothesis, Q is 

asymptotically distributed as a 2c , with degrees of freedom equal to the number of autocorrelation. 
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= −4 0, 0310TI , respectively. The Moran coefficient16 is identical to LM-error tests, and 

reads as: 

                                                   2
2

1 ( )LM
T sρ =

'e We  
 

where 2s  is the maximum likelihood variance n
e'e , T is a scalar computed as the trace of a 

quadratic expression in the weight matrix, 2( )T tr= W'W + W , and the test asymptotically 

follows a 2  χ  distribution with one degree of freedom. In these cases we have 

[ ]
2

T11  = 4,131 χ and [ ]
2

T41  = 0,173 χ , then the hypothesis of one specific misspecification 

with spatial error, under high level of significance, can be rejected. 

 

 

V. Conclusion 
 

 This spatial question appears as a marginal problem when the goal is achieving an 

efficient appraisal method for housing assessment; so we analysed this question in this 

context, nevertheless the growing availability of easy–to–use software for spatial analysis 

makes it tempting to simply ‘try’ all kinds of different spatial models and techniques. The 

tools of spatial statistics including geostatistics bring new explorative opportunities on real 

estate markets. From the statistical point of view, a usage of spatial statistics method gives 

us more accurate estimations enabling more precise inference what means in practice that 

we have more explicit insight in mechanisms and processes occurring on real estate market 

than previously. 

 The cost-efficiency analysis relatively to this research recommend parsimonious but 

no omission, therefore the present essay try answered to the spatial doubt underlying to 

hedonic regressions. 

 

 

 
 

                                                 
16 Is a scaled coefficient, since it’s calculated for row-standardized weights. 
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Annexe I:  Identification and Definition for Variables 
 

Variable Definition 

AGE Age of house (years) 

AQCENTRAL  Dummy variable: one if house is heated by central system, else zero.  

AREA  Total floor space house (unit for area, m2) 

ARRECA  Dummy variable: one if house has loft, else zero.  

BATHROOMS Number of bathrooms 

CV  Dummy variable: one if house has placed on underground floor, else zero.  

ELEV Dummy variable: one if house has lift system, else zero.  

EXPSOL  Dummy variable: one if house has a good sunlight, else zero.  

GCANAL  Dummy variable: one if house has central gas system, else zero.  

GSDOS Dummy variable: one if house has two garages, else zero.  

GSUM  Dummy variable: one if house has one garage, else zero.  

JANDUPLAS  Dummy variable: one if house has double windows, else zero.  

LAR  Dummy variable: one if house has inglenook, else zero.  

LCNTRO Dummy variable: one if house has situated at Centro, else zero.  

LCVLHOS  Dummy variable: one if house has situated at CVelhos, else zero.  

LGGARE  Dummy variable: one if house has situated at GuardaGare, else zero.  

LLAMNH Dummy variable: one if house has situated at Lameirinhas, else zero.  

LLUZ  Dummy variable: one if house has situated at BairroLuz, else zero.  

LNVMERCADO  Transaction price of the i-th house sold in 2002.  

LPMILEU Dummy variable: one if house has situated at PovoaMileu, else zero.  

LPNHR Dummy variable: one if house has situated at BPinheiro, else zero.  

LRDIZ Dummy variable: one if house has situated at RioDiz, else zero.  

LSREMD  Dummy variable: one if house has situated at SraRemedios, else zero.  

PPRIM Dummy variable: one if house has located on first floor, else zero.  

PQRT Dummy variable: one if house has located on fourth floor, else zero.  

PSEG Dummy variable: one if house has located on second floor, else zero.  

PTERC Dummy variable: one if house has located on third floor, else zero.  

ROOMS Number of rooms 

RCH  Dummy variable: one if house has located on ground floor, else zero.  

 


